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Abstract. This study attempts to solve a dynamic order promising problem, 
where customer requests arrive in a random fashion, and the producer processes 
customer orders on a batch basis. This decision process repeated for every pre-
defined batching interval, and the current decision-making must take into ac-
count the previously committed orders. The problem is formulated as a mixed 
integer programming model with fuzzy constraints, which express the decision-
maker’s subjective judgment regarding customer’s price tolerance. The pro-
posed model embeds the advanced available-to-promise (AATP) concept to 
support accurate computation of profit and customer order promising. A genetic 
algorithm is developed to solve the problem. Experiments by computer simula-
tions are carried out to demonstrate the proposed approach. 

Keywords: Reverse auction, Bidding, Advanced available-to-promise, Fuzzy 
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1 Introduction 

Many of the Fortune 2000 companies have adopted reverse auctions as a common 
technique for sourcing goods and services [7]. In a reverse auction, multiple qualified 
suppliers are invited to participate in a bidding process, in which the suppliers bid 
against one another over the Internet by proposing their ideal price, quantity, delivery 
date, etc., in an attempt to win the business. 

It was noted by Cheng [4] that a profitable and promising bid depends on accurate 
estimates of the production costs associated with specific delivery dates, and the 
awareness of market competition by the decision-maker. For such consideration, 
Cheng [4] incorporated the concept of available-to-promise (ATP) inventory in a 
multiple-objective decision-making model to determine the bid price and delivery 
time. Basically, the ATP inventory is the uncommitted portion of a company’s inven-
tory and planned production which is maintained in the master schedule to support 
customer order promise [1]. The use of ATP enables the company to respond imme-
diately to a buyer’s request and facilitates satisfaction of the delivery promise [2]. 
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The traditional ATP is merely a bookkeeping function in the master production 
schedule, and it can only render limited flexibility of the allocation of production 
resources. In recent years, advanced available-to-promise (AATP) is increasingly 
considered as an effective tool to achieve on-time delivery, to reduce the number of 
missed business opportunities, and to enhance revenue and profitability [6]. AATP is 
based not only on pre-calculated quantities, but also on effective order-driven optimi-
zation approaches that serve the front end customers from the perspective of the entire 
supply chain. AATP can directly link available resources with customer orders to 
improve the performance of a supply chain [2, 3]. 

Cheng and Cheng [5] integrated the AATP concept with a dynamic pricing (i.e. 
bidding) mechanism to address the competition between customer orders for limited 
production resources to improve the efficiency of resource utilization. The problem 
was formulated as a mixed integer programming with the bid price being constrained 
by a fuzzy membership function, which modeled the decision-maker’s subjective 
judgment on market competition. Though the model of Cheng and Cheng [5] can 
determine a future production plan along with the bidding decision, it did not provide 
a mechanism for updating the production plan when new customer orders arrive. It is 
possible that the overall profit can be increased by changing the production plan to 
allow the production of new orders. This attempt can be achieved by reviewing the 
ATP on a rolling horizon basis. In other words, after every time interval the produc-
tion resources are reallocated to fulfill previously promised orders and to promise 
newly-arrival orders. The present study extends the approach of Cheng and Cheng [5] 
to model the bidding decision with a rolling horizon AATP planning by mixed-integer 
programming. The proposed model enables the dynamic allocation of production 
resources when new orders arrive and hence improve the efficiency of resource utili-
zation. The problem is solved by a fuzzy approach based on the concept of compro-
mise solutions between the overall profit and the possibility to win the contract. The 
solution procedure is carried out by a genetic algorithm, and experiments by computer 
simulation are conducted to evaluate the performance of the proposed approach. 

2 Modeling of Bidding Decision with Rolling Horizon AATP 

A customer request involves three dimensions, namely quantity quoting (i.e. commit-
ting order quantity), delivery-date quoting (i.e. committing order quantity), and price 
quoting (i.e. price demanded by the supplier to deliver the order). Customer requests 
arrive in a random fashion, and order-promising and -fulfillment decisions are made 
for a batch of requests collected over a batching interval. In the production planning 
for fulfilling the newly-arrived orders, it must also take into account the previously 
committed orders in earlier runs of order review whose production has not been fully 
completed. In other words, the production resources usage planed in the earlier runs 
could be reassigned in the current review subject to that previously committed order 
quantities and delivery date remain unchanged.  

The order-promising and -fulfillment mechanism proposed in this study is to de-
termine which orders to accept and, for each accepted order, determine a bid price 
based on the cost associated with this order. The decision regarding the fulfilment of 
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an accepted order includes the delivery time and quantity, which is translated into a 
production schedule consisting of production lots at various periods. The cost of an 
order is computed according to the production cost and the holding cost of its produc-
tion lots. The objective of the proposed mixed-integer programming model is to max-
imize an overall profit, which is defined as the difference between the total revenue 
and the tangible/intangible costs, where the intangible costs are defined as the cost of 
denying an order.  

2.1 Mixed-Integer Programming with Fuzzy Constraint 

The MIP model in this study is an extension of the model proposed by Cheng and 
Cheng [5] to enable the execution of a rolling horizon planning. The model is present-
ed as follows. 

Decision variables: 
Qi(t): quantity to be delivered to customer i at time t. 
qi(s,t): quantity to be produced at time s to fulfil the order Qi(t). 
Di(t): binary variable, equal to 1 if the order of customer i is delivered at time t; 0 

otherwise. 
Zi: binary variable, equal to 1 if the order of customer i is promised; 0 otherwise. 
ci: unit cost to deliver order Qi(t). 
pi: unit bid price submitted to customer i. 

Parameters: 
O: set of newly-arrived requests. 

Ô : set of previously-promised orders. 
te: ended time of the previous planning. 
T: length of the planning horizon. 

)(ˆ tQi : quantity has been promised to customer i. 

),(ˆ tsqi : production lot that has been completed to fulfil )(ˆ tQi . 

id̂ : delivery date has been promised to customer i. 

],[ u
i

l
i dd : acceptable delivery time interval requested by customer i. 

],[ u
i

l
i aa : acceptable delivered quantity interval requested by customer i. 

θi: unit penalty cost for denying the order of customer i. 
ri: unit production time required to produce qi(s,t). 
πi(s): unit production cost of qi(s,t). 
hi: holding cost per unit of time of per unit of qi(s,t). 
K(t): available production capacity at time t (in time unit). 
gi: minimum acceptable gross profit rate of the supplier to deliver the order of cus-

tomer i. 

iu~ : upper bound of unit bid price perceived by the supplier for the order of cus-

tomer i, i.e. the price above which the supplier considers the bid to have no chance of 
success. 
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M: very large number. 
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Integrality: 
Zi ∈ {0, 1}, ∀i∈O 
Di(t) ∈ {0, 1}, ∀i∈O, and te+1≤ t ≤ te+T 

Non-negativity: 
Qi(t) ≥ 0, ∀i∈O, s < t and te+1≤ t ≤ te+T 

qi(s,t) ≥ 0, ∀i∈O∪ Ô , and te+1≤ t ≤ te+T 

ci ≥ 0, ∀i∈O∪ Ô  
pi ≥ 0, ∀i∈O 
 
The objective of the above model is to maximize the overall profit of the supplier, 

where the profit is defined as the total revenue deducted by the total costs of orders to 
be delivered and the penalties of all denial orders. There are four major groups of 
constraints. Constraints (2)-(9) are to ensure feasible deliveries, where Constraint (2) 
is the production plan for newly-arrived orders where qi(s,t) is the production lot to be 
produced at time s in order to fulfil the order Qi(t) which will be delivered at time t. 
Constraints (3) and (4) specify the acceptable range of delivery quantity requested by 
customers; and Constraints (5) and (6) define the feasible delivery time window. Con-
straints (7) and (8) are to guarantee the previously-promised orders will be delivered 
on quantity and on time. The production of a previously-promised order may have 
been partially carried out at the current time point; thus, Constraint (9) expresses the 
possible resources rearrangement for the unfinished part of such an order. Constraint 
(10) enforces that the total production of each period cannot exceed its available ca-
pacity, while Constraints (11) and (12) relate the existence of qi(s,t) with the delivery 
decision Di(t). Constraints (13) and (14) define the cost of an order, for newly-arrived 
orders and formerly-promised orders respectively, as the summation of its production 
cost and holding cost. Constraint (15) guarantees the bid prices for newly-arrived 
orders render a minimum profit margin of their costs, while Constraint (16) expresses 
the decision-maker’s belief that the maximum price the customer can tolerate. It is 
difficult to assign a precise value to this parameter, and therefore in the current study, 
it is defined by a fuzzy upper-bound iu~ . Finally, Constraint (17) specifies that the 

previously-promised prices to customers keep unchanged; and Constraint (18) guaran-
tees the cost of a previously-promised order not increasing to harm the minimum 
profit margin due to production resources rearrangement. 

2.2 Fuzzy Approach 

The above mixed-integer programming contains a fuzzy constraint (16); and thus 
cannot be solved by regular optimization techniques. This study adopts the concept of 
Werners [8] to formulate a fuzzy approach to solve the problem. 

The satisfaction of the fuzzy constraint (16) in the MIP model is evaluated through 
a fuzzy membership function. As shown in Figure 1(a), the fuzzy membership func-
tion of the price variable is defined as μprice(pi)∈[0, 1]. Basically, this membership 
function models the supplier’s confidence in the possibility of winning the contract 
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with an offer price pi. Note that the values of inf
ip  and sup

ip  in Figure 1(a) are as-

signed by the supplier in accordance with his experience and knowledge of the mar-
ket. This membership function coincides with the fact that the possibility of winning 
the contract decreases when the bid price increases. By the definition of the member-
ship function in Figure 1(a), the fuzzy constraint can be rewritten as: 

))(1( infsupinf
iiii pppp −−+≤ α ,        (19) 

where α is a membership value and α∈[0, 1]. Equation (19) means that the upper bound 

of the bid price has a maximum tolerance of )( infsup
ii pp − , and the satisfactory of 

Constraint (16) decreases when the tolerance increases, or equivalently, the possibility 

(i.e. α) to win the contract decreases when the bid price increases from inf
ip  to sup

ip . 

To construct a fuzzy membership function for the objective function, the inferior (P0) 
and the superior (P1) of the objective value P are defined respectively as follows: 

 P0 = maximize (1) 
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  (2)-(15), (17) and (18) 

  inf
ii pp ≤ , ∀i∈O 
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 P1= maximize (1) 
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  sup
ii pp ≤ , ∀i∈O. 
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The membership function of (20) is also graphically shown in Figure 1(b). 
The optimum decision of the original problem is now considered as to maximize 

the conjunct satisfaction of objective value and the fuzzy constraint, where the con-
junct satisfaction is obtained through a minimum operator. This concept is referred to 
as a max-min approach. Thus, the original MIP is reformulated as: 

Maximize α 
Subject to: 
 (2)-(15), (17) and (18) 
 μi(pi)≥ α, ∀i∈O         (21) 
 μP(P)≥ α         (22) 
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μPrice(pi)
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P

1

0
P0 P1

μP(P)

  

Fig. 1. (a) Membership function of the bid price (b) Membership function of the objective 

3 Solution Procedure 

The present study modifies the algorithm of Cheng and Cheng [5] to enable the exe-
cution of dynamic planning of order promising and fulfillment under a rolling horizon 
environment. There are three modules in this solution procedure, namely main algo-
rithm, genetic algorithm, and adjustment algorithm. A conceptual diagram of the rela-
tions among the three modules are depicted in Figure 2. The main algorithm solves 
the max-min problem numerically by gradually increasing the value of α and activat-
ing the genetic algorithm to find a solution of order promising and fulfillment under a 
newly updated α value; the optimum α is then determined by applying the max-min 
operator on all resulting solutions under various values of α. Since the genetic algo-
rithm does not guarantee to yield feasible solutions of order promising and fulfill-
ment, solutions are sent to the adjustment algorithm before they can be further used in 
the main algorithm for solving the max-min problem. 

Main Algorithm

Solve the max-min 
problem to find Pi

Update α 

Adjustment 
Algorithm

Genetic 
Algorithm

Solve the order 
promising and 

production problem
 

Fig. 2. Flow diagram of the solution procedure 

3.1 Main Algorithm 

The detailed steps of the main algorithm are described as follows. 
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Step 0. zi = 1, ∀i∈O∪ Ô , α = 0 

Step 1. For all i∈O, let ))(1( infsupinf
iiii pppp −−+= α . 

For all i∈ Ô , let ii pp ˆ= . 
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Step 3. Go to Genetic Algorithm 
Step 4. Go to Adjustment Algorithm 
Step 5. α = α + Δα 

If α > 1, then go to Step 5; otherwise go to Step 1. 
Step 6. Construct μP(P(α)) by Eq. (20). 
Step 7. Find })),((min{max* ααμα

α
PP=  

Stop. 
  
In the beginning of the main algorithm, all n customer orders are accepted (i.e. zi = 

1, i= 1,…n), and the satisfaction of Constraint (13) is set to 0 (i.e. sup
ii pp ≤ , ∀i). 

The value of α is then gradually updated with a small increment Δα, and the fitness 
function is defined in accordance with the current α, where the bid price pi is set to its 

current upper bound ))(1( infsupinf
iii ppp −−+ α . This fitness function is passed to 

genetic algorithm for fitness evaluation of each chromosome. The solutions obtained 
by the genetic algorithm under different α values are returned to the main algorithm 
and are used to construct the membership function μP(P(α)). In the final step of the 
main algorithm, the optimum of the fuzzy mathematical programming problem is 
obtained by finding the maximum compromise between the overall profit and the bid 
price constraints. 

It is noted that the fitness function defined in Step 1 of the main algorithm has an 
auxiliary penalty term, )(

1

s
tst

s

e

φλ
<≤+

⋅ . This auxiliary penalty term is to enforce the 

satisfaction of the capacity constraint (10). 

3.2 Genetic Algorithm 

Solutions of the problem are encoded as chromosome in a table format as shown in 
Figure 3, in which, each row represents the production lots to fulfill a customer order 
(n customers in total), the columns represent time periods excepting the last column 
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denoted by ti is the delivery time of order i, and the cells (excepting the column of ti) 
denote qi(s, ti). The steps of the genetic algorithm are as follows. 
 

  Period  
  te+1 te+2 te+3 … te+T ti 

Order i 

1 20 0 10 … 0 4 
2 0 20 40 … 0 6 
: : : : : : : 
n 0 70 0 … 0 5 

Fig. 3. Solution encoding 

Step 0. Initial gene pool generation: 
For each chromosome do 

Step 0.1 For all i∈O, randomly generate ti ∈[ l
id , u

id ]. 

For all i∈ Ô , let ii dt ˆ= . 

Step 0.2 Let qi(s, ti)=0, if s ≥ ti, ∀i∈O∪ Ô  
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Step 2. Conduct reproduction. 
Step 3. Conduct crossover. 
Step 4. For each newly generated chromosome do 

Step 4.1 Let qi(s, ti)=0, if s ≥ ti, ∀i∈O∪ Ô  
Step 4.2 For all i∈O,  
if ( ) l

i
tst

ii atsq
ie

<
<≤+1

, , then randomly increase some qi(s, ti), where s<ti, until 
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i
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Step 4.3 For all i∈Ô ,  
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Step 5. Conduct mutation 
Step 6. For the chromosome picked to mutate do 

Step 6.1 If the changed bit belong to {ti, ∀i}, then 
Case i∈O: 
If l

ii dt < , then let l
ii dt = , else if 

u
ii dt > , then let u

ii dt = . 

Repeat Steps 4.1 and 4.2. 
Go to Step 7. 

Case i∈ Ô : let ti = id̂ . 

Step 6.2 Case i∈O: repeat Step 4.2. 

Case i∈ Ô : repeat Step 4.3. 
Step 7. If the stop criterion is satisfied, then return to Main Algorithm; otherwise go to 

Step 1. 
 
Step 0 generates an initial gene pool, where for new orders, the corresponding 

genes must satisfy the delivery time constraint and the quantity constraint requested 
by customers; while for previously promised orders, the delivery time cannot be 
changed but the incomplete portions of the order can be rescheduled under the condi-
tion that they must meet the total quantity already promised. The fitness of each 
chromosome is evaluated in Step 1. The fitness function passed from the main algo-
rithm is directly employed if the chromosome satisfies the minimum gross profit  
constraint (15); otherwise the fitness is set to 0 to indicate this is an unacceptable 
chromosome. The reproduction and the crossover operators are then applied to the 
pool of chromosomes in Steps 2 and 3 respectively. The resulting new generation of 
chromosomes is adjusted in Step 4 in order to maintain their feasibility. Step 5  
conducts the mutation operation and the new chromosome is adjusted in Step 6 if 
necessary to guarantee its feasibility.  

3.3 Adjustment Algorithm 

Though the auxiliary penalty term in the fitness function enforces the satisfaction of 
capacity constraint (10), the solutions obtained from the genetic algorithm may still 
fail to satisfy this constraint. Thus, it is necessary to adjust the solution to obtain fea-
sible solutions to the original problem. The solutions from the genetic algorithm are 
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therefore sent to the adjustment algorithm for production rearrangement/removing, or 
removing the entire order if necessary. 

The adjustment algorithm consists of four functions, namely access, production re-
arrangement, production removing, and order removing. The access function is to 
receive the solutions from the genetic algorithm and return the adjusted solutions to 
the main algorithm. The adjustment of an infeasible solution starts with the rear-
rangement of excessive productions to periods with surplus capacities. If such  
rearrangement is incompatible then part of the productions will be removed in the 
production removing function; and if the removing function still cannot find a feasible 
solution then one of the orders will be removed in the order removing function. When 
an order is removed, the vacant capacity would allow new rearrangement of produc-
tions if there are still excessive productions at some periods.  

4 Experiments and Analysis 

Shorter batching intervals mean better customer response. On the other hand, a  
longer batching interval contains more demand patterns and hence renders a greater 
opportunity to maximize the profit. If shorter batching intervals can still generate 
comparable profits to longer batching intervals, it would be the ideal solution to the 
manufacturer. Thus, the experiments in the present study focus on the effects of 
batching interval size and capacity availability degree on various performance 
measures, including total profit, denial order cost, and holding cost. The batching 
interval size is set to five levels, 1, 2, 3, 6, and 9 periods, and the capacity availability 
degree is set to three levels, 100%, 80%, and 50%, where the capacity availability 

degree is defined as 
∪∈
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OOi
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Tt

ts
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e

e
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)(
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1
/)( . The combinations of different 

batching interval size and capacity availability degree result in 15 scenarios. 
The arrival of customer requests is assumed to follow a Poisson distribution with a 

mean of 5 requests per period and is randomly generated according to this distribu-
tion. The parameters associated with each request are also randomly generated within 
pre-specified ranges. The remainder parameters are fixed as follows: the gross profit 
rate gi=20%, ri=1, πi=2, and hi=0.5. The planning horizon T is set to 18 periods, and 
the total time length under consideration is 36 periods for all scenarios. To obtain 
reliable results, 10 problem instances are randomly generated for each scenario. The 
computer program is run on a PC with Intel® Core(TM)2 Duo CPU E8400 
@3.00GHz and 1.96GB RAM. Computational results are presented in Figure 4.  

When capacity availability degrees are 100% and 50%, batching interval of 3 peri-
od results in the greatest profit, while there is no significant difference among the 
profits by different batching intervals for the case 80% capacity availability. This 
result is related to the balance of the revenue and the denial penalty and the holding 
cost. From this result, it is suggested that batching interval of 3 period is a suitable 
choice in our example. 
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Fig. 4. Computational result 

5 Concluding Remark 

This study integrates the production planning and the bidding decision for customer 
order fulfillment decision. A mixed-integer programming model based on the concept 
of advanced available-to-promise inventory and fuzzy constraints on bid price was 
formulated. An algorithm that combines the max-min optimum approach and the 
genetic algorithm is developed to solve the problem. Experiments by computer simu-
lations are carried out to demonstrate the proposed approach. 
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